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Abstract
We study the effect of Coulomb correlation on the transmission properties of a
one-dimensional chain connected to two perfect leads in the presence of a static
magnetic field. Due to the presence of a strong on-site nonlinear interaction
between two opposite spins within the chain, the zero-voltage conductance
exhibits strong correlations between parallel and antiparallel spin conduction
channels which results in a substantial spin polarization for small chain sizes.

1. Introduction

Spin-polarized electron tunnelling has become a very active area of research due to its potential
in the manufacture of magnetic field sensors and digital storage devices [1]. Usually these
applications deal with nanostructure devices and consequently the mutual Coulomb interaction
between electrons due to their strong confinement plays an important role. This gives rise
to a nonlinear interaction which will certainly affect the transport properties of the system.
Nonlinear effects have been the subject of intensive research in condensed matter physics,
both from the theoretical and experimental points of view [2]. This is due, in part, to the
wide range of potential applications in the design of new optical and electronic devices for
computing and communications. For instance, it has been shown that nonlinearity gives rise to
multistability and noise, and might originate a chaotic behaviour in certain systems. Transport
properties of nonlinear chains of atoms and double-barrier structures under applied electric
fields have been recently examined by Cota et al [3]. Their work shows that resonances shift
in the presence of nonlinearity and that their width decreases as the nonlinearity becomes
stronger. Nonlinearity is also relevant to transport problems in nanoscale devices [4]: it is
known that the electron–electron interaction is important in any serious study of the transport
properties of small systems such as quantum dots and few-impurity models [5]. Generally
speaking, the Coulomb interaction gives rise to a nonlinear term in the Schrödinger equation.
In this case the Coulomb interaction is modelled by a cubic, nonlocal term in the equation of
motion of the corresponding fermionic field operators. To proceed further, a Hartree–Fock
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approximation for the nonlinear term is used [6]. One can also use a perturbative approach in
the Coulomb interaction [7].

In this work we take the alternative approach of modelling the effect of the electron–
electron interaction by a nonlinear local term in the Schrödinger equation. One can look
at such an approximation as being a Hartree-like approximation of the original many-body
problem. We examine a one-dimensional (1D) problem where the source of the nonlinearity
is due to the presence of a strong on-site Coulomb interaction between the two opposite spins
at the same site, rather than to a strong electron–phonon coupling. Since the spin degree of
freedom plays an important role in the correlated transport through the system, a study of the
magnetic field dependence of the linear conductance will exhibit a lift of the degeneracy of the
two spin states when a strong magnetic field is applied. That is why we will focus on the zero-
voltage conductance and conductance polarization as a function of the external magnetic field.

In this paper we report on the numerical calculation of the two-probe conductance and
the transmission coefficient of a finite interacting 1D system connected to two perfect leads.
Since in our present study we are not concerned with the charging effect, which is of primary
importance for quantum dots, we will not take into consideration the confining potential of
the chain. In section 2 we introduce our model and explain the principle of our numerical
approach. In section 3 we evaluate the transmission coefficient in the presence of nonlinear
interaction and study the effect of magnetic field and interaction with the leads. In section 4
we present the numerical results for the finite-temperature conductance and study the effect
of the magnetic field on the conducting properties of the finite chain. Finally in section 5 we
present our conclusions with a summary of our basic results.

2. Theoretical model

In this paper we would like to investigate the effect of the magnetic field on the transmissive
properties of a nonlinear chain described by an Anderson Hamiltonian. We use the standard
Anderson model to describe this system. The model consists of three regions: a finite chain
of strongly interacting atoms at sites 1 � i � N + 1, and two semi-infinite leads on the left,
−∞ < i � 0, and on the right, N + 2 � i < +∞.

We consider the problem of the transmission of an electron incident with energy E upon a
strongly interacting region where electron–electron interaction is important. In the interacting
region we impose a strong-local-interaction term that mimics the on-site Coulomb interaction
Uρiσ ρi−σ which is proportional to both spin-up and spin-down local densities, ρiσ = |�iσ |2
where �iσ is the probability amplitude for finding an electron at the i th site. U is a parameter
measuring the strength of the local Coulomb interaction. This repulsive interaction arises from
the charge accumulation and shifts the energy levels of the opposite spin states. Thus we expect
our model to adequately describe the nonlinear effects due to charge accumulation:

H =
∑
n,σ

[
εn,σ �∗

n,σ �n,σ +
∑
m �=n

Vn,m�∗
n,σ�m,σ + 1

2 U |�n,σ |2|�n,−σ |2
]

(1)

where �n,σ (t) is the complex amplitude and εn,σ = εn − σ B is the energy at site n
(n = 1, 2, . . . , N + 1, N being the size of the chain) of an electron with spin σ . U is the
strength of the on-site interaction within the chain and Vn,m is the overlap integral which
depends, in general, only on the distance between the two sites m and n, so Vn,m = Vm,n .
Note that �n,σ and i�∗

n,σ form canonically conjugate variables and d
dt �n,σ = − ∂ H

∂(i�∗
n,σ )

is the

corresponding equation of motion. From the above Hamiltonian we then obtain

i
d

dt
�n,σ +

∑
m

Vn,m�m,σ + (εn,σ + U |�n,−σ |2)�n,σ = 0 (2)



Magnetoconductance through a small nonlinear 1D system 12479

where �n,σ (t) and εn,σ are the probability amplitude for finding the electron at site n and the
corresponding local energy, respectively, at site n for an electron with spin σ . The on-site
energy εn,σ = εn − σ B is defined in terms of the zero-field on-site energy level εn shifted
by the Zeeman energy. ‘Spin-up’ designates the electron spin direction in which the electron
magnetic moment is in the direction of the applied magnetic field and has a lower energy than
that of the spin-down electron whose magnetic moment is directed oppositely to the field.
The above equation is a variant of the discrete nonlinear Schrödinger (DNLS) equation whose
properties have been studied extensively in recent years. The origin of the nonlinearity, in our
case, is the local Coulomb interaction which exists only within the small system and shifts
the energy levels of opposite spins. However, the local nature of this interaction term makes
it inadequate to describe the long-range Coulomb interaction. Thus, our model (2) does not
correspond to the well-known Hubbard model, often used as a model Hamiltonian to describe
nanostructure devices. Also, equation (2) does not even correspond to the classical Hartree
approximation of the Hubbard model. In the Hartree approximation, the nonlinear term is
described not by a single orbit as described in equation (2), but rather by the sum of all orbits
below the Fermi level. Nevertheless, the DNLS equation (2) does contain some essential
features of the interacting system, such as the repulsive and nonlinear nature of the interaction.

Let us find the stationary states of (2), i.e. we look for solutions of the type �n,σ (t) =
eiEt�n,σ (E) where E is the associated eigenvalue. We restrict ourselves to a nearest-neighbour
tight-binding approximation. Let Vn,n+1 be the hopping integral between the nth and the (n+1)th
site; under these assumptions our previous equation becomes

(E − εn,σ )�n,σ = Vn,n−1�n−1,σ + Vn,n+1�n+1,σ + U |�n,−σ |2�n,σ . (3)

We now choose the hopping integrals as follows:

Vn,n+1 =




VL for n < 0 or n � N + 2

V0 for n = 0 and N + 1

VS for 1 � n � N .

(4)

That is, the hoppings within the lead and the interacting system are VL and VS, respectively,
while the links of the interacting system with the left and right leads are V0. From now on
we use a parameter defined as y = V0/VL that expresses the degree of hybridization of the
small-chain states with the extended states at the leads.

3. Transmission features

We consider first the problem of transmission of an electron incident on the quantum wire in
the presence of a nonlinear interaction and magnetic field. To study the scattering properties of
our system, we send a plane wave from the right and study its transmission. Thus, we assume
a solution of the form

�n,σ =
{

(Iσ e−ikn + Rσ eikn)χσ for n � N + 1
Tσ e−iknχσ for n � 0.

(5)

Here, χσ describes the electronic spin state which is assumed to be conserved throughout the
transmission process since we are ignoring spin-flip processes. The quantities Iσ , Rσ , and Tσ

represent the amplitudes of the incident, reflected, and transmitted waves, respectively.
From the computational point of view, equation (3) is very useful. It relates the values of

the wavefunction at three successive discrete locations along the x-axis. It is often referred to
as the Poincaré map in the literature [8, 9]. For 1D systems the discretization of the Schrödinger
equation can be performed exactly [9]. It has been proven numerically that the output uniquely
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defines the input but the inverse is not true [10]. That is why in our numerical computations
we will fix the output amplitude to unity and iterate to find the input amplitude of the incident
wave. The solution of equation (3) is done iteratively by taking our initial conditions �0 = 1
and �−1 = exp(ik); the lattice spacing is set to unity throughout this article. We consider here
an electron having a wavevector k incident at site N + 2 from the right (by taking the length of
chain L = N , i.e. N + 1 sites); the transmission coefficient can then be expressed as [8, 11]

τσ =
∣∣∣∣Tσ

Iσ

∣∣∣∣
2

= 4 sin2 k

|�N+2,σ − �N+3,σ exp(−ik)|2 . (6)

Thus the transmission coefficient depends only on the values of the wavefunction at the end
sites, �N+2,σ and �N+3,σ , which are evaluated from the iterative equation (3). In the region
outside the chain, the leads are described by a noninteracting tight-binding Hamiltonian for
which the dispersion relation reads

E = 2VL cos k (7)

which relates the incident electronic energy, E , to the propagation wavenumber k. For
convenience, we measure all energies in units of VL , i.e. we set VL = 1 in all of our numerical
computations. Similarly, we set VS = 1, so we concentrate on the interaction and magnetic
field effect on the transmission properties of our system.

The numerical computations for the transmission through a single impurity (N = 0 in
our notation, since N represents the length of the chain rather than the number of atoms) are
shown in figure 1. In figure 1(a) we show how the transmission changes as we vary the strength
of the binding to the leads (expressed by y = V0/VL ) for U = 0 and B = 0. As expected,
the transmission is low and sharply peaked at the resonant energy E = 0 for small values
of y and then widens and increases in magnitude as y increases. In figure 1(b) we show the
transmission for B = 0, y = 1 and different values of the nonlinear interaction strength, U .
We see that the transmission gets more and more suppressed as U increases. Figure 1(c) shows
the transmission versus the applied magnetic field for different values of y, U = 0, and E = 0.
The transmission has a Gaussian-like shape while its peak decreases abruptly with decreasing
values of y. Figure 1(d) shows the transmission versus B for the interacting case with U = 1
and one sees clearly that the presence of the nonlinear interaction lifts the degeneracy of the
energy level. We see from this figure that the up-spin contribution has been increased while the
down-spin contribution is being suppressed in the presence of the nonlinear interaction. In the
case y = 0.5 we see that the down-spin contribution is completely suppressed (see figure 1(d)).

4. Coulomb interaction effect on the conductance

In order to obtain a realistic picture of our model, it is necessary to include in our study finite-
temperature effects. The two-probe conductance (in units of e2/h̄) at finite temperature is
defined by the thermal average of the transmission coefficient [12]:

G(T, µ) =
∑

σ

∫
dE

(
−∂ f (µ, E)

∂ E

)
τσ (E). (8)

Here f (µ, E) is the Fermi–Dirac distribution function given by

f (µ, E) = (e(E−µ)/kB T + 1)−1, (9)

where kB is the Boltzmann constant and µ the chemical potential of the sample. The integration
is extended over the allowed energy band, but at low temperatures the derivative of the Fermi–
Dirac function is a strongly peaked function of E , which vanishes everywhere except for
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(a) (b)

(c) (d)

Figure 1. (a) Transmission coefficient across a single impurity as a function of the incoming
plane-wave energy, for B = 0, U = 0, and different values of the system–leads interaction y.
(b) Transmission coefficient across a single impurity as a function of the incoming plane-wave
energy, for B = 0, y = 1, and different values of the nonlinear interaction U . (c) Transmission
coefficient across a single impurity as a function of the applied magnetic field B , for E = 0, U = 0,
and different values of the system–leads interaction, y. (d) Transmission coefficient for each spin
across a single impurity as a function of the applied magnetic field B , for E = 0, U = 1, and
different values of the system–leads interaction y.

energies close to the chemical potential, µ; the integral will be essentially zero outside an
interval of width kB T . At low temperatures the general form of the G(T, µ) curve depends
strongly on the value adopted for the chemical potential. Thus, in general, the conductance
will be enhanced if the chemical potential is close to a set of transmission peaks (resonances)
and reduced when the chemical potential is away from resonant transmission peaks. Thus
the conductance as a function of temperature will exhibit several characteristic structures
depending on the location of the chemical potential. In our case, since we are just interested
in the field dependence of the conductance and the effect of the nonlinear interaction, we will
fix our chemical potential to zero in all computations. We should also keep in mind that our
energies are counted in units of VL , which in general is of the order of few meV. Thus while
computing the conductance in equation (8), it should be borne in mind that temperatures of the
order of T � 10−1–10−2 are reasonably low temperatures, while T � 1 corresponds to high
temperatures.
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(a)

(c)

(b)

Figure 2. (a) Conductance polarization (in units of e2/h̄) as a function of the applied magnetic
field B for different chain sizes (N is the number of atoms in the chain). The interaction energy is
U = 1, the temperature is T = 0.1, and y = 1. (b) Conductance (in units of e2/h̄) as a function of
the applied magnetic field B for different chain sizes (N is the number of atoms in the chain). The
interaction energy is U = 1, the temperature is T = 0.1, and y = 1. (c) The maximum value of the
conductance (in units of e2/h̄) as a function of the number of atoms in the chain. The interaction
energy is U = 1, B = 0, the temperature is T = 0.1, and y = 1.

We have calculated the conductance numerically using the transmission coefficient
obtained in the previous section. The total conductance is calculated as the sum of the
conductances for up- and down-spin electrons while the conductance spin polarization (also
called magnetoconductance) is defined as �G = G↑ − G↓. Figures 2(a), (b) show the
magnetoconductance �G and conductance G(B), respectively, as a function of B/U , for
a relatively large, fixed value of U (i.e. U/VL = 1). The maximum contribution to the
conductance at zero field is mainly due to the fact that both spins contribute equally. At larger
field the spin-down contribution starts being suppressed by the on-site Coulomb interaction and
hence the conductance decreases. At very large magnetic fields B � U , both spin channels
will be suppressed and so is the total conductance (G = G↑ + G↓) as shown in figure 2(b).
Thus the magnetic field dependence of the magnetoconductance exhibits a clear transition
from correlated to uncorrelated transport. The up-spin channel contributes the most to the
conductance at relatively low fields. We see that the polarization conductance (figure 2(a)) is
peaked at values of the magnetic field which become smaller as the system size increases. In
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standard Hubbard model one expects a peak in the conductance at B = U , but in our case the
Coulomb interaction is weighted by the probability amplitude |�iσ |2 and, due to the continuous
nature of this amplitude, the Coulomb effect will be averaged out. In figure 2(c) we show how
the maximum value of the conductance changes with the length of the chain (for each value
of N we evaluate the conductance for different values of B and choose the maximum value,
called Gmax ). It is clear from this figure that the conductance decays very rapidly with length,
so the magnetoconductance effect that we are interested in will not be observable for N � 10
(in figures 2(a), (b) the N = 10 contribution is almost unobservable; it is basically a very small
spike at very low field) and its magnitude decreases rapidly with length. This behaviour of the
conductance for long chains is expected, because the effect of the on-site Coulomb interaction
is basically to push the resonances of the transmission by an amount, roughly speaking, of the
order of U . Thus if the Coulomb interaction is of the order of the width of the energy band,
then almost all resonant energies have been boosted outside the allowed energy region and
consequently no transmission and hence no conduction occurs.

5. Conclusions

We have studied in this article a simple alternative model for the properties of transmission
through a small interacting system connected to perfect leads and subject to a static magnetic
field, based on an extension of the DNLS equation. The results show that the transmission
for an electron with spin parallel to the external field is always greater than the transmission
for the antiparallel spin. The conductance G(B) shows a single maximum as a function of
the external field, which occurs at zero field; then it decreases quickly at large fields due to
the presence of the Coulomb interaction. A substantial tunnelling magnetoresistance has been
evaluated whose magnitude decreases with the size of the system. This effect has potential
applications in the manufacture of magnetic field sensors and digital storage devices. However,
it is clear that the magnitude of this effect depends strongly on two parameters, the strength
of the on-site Coulomb interaction U and the length of the chain N . The imbalance between
up- and down-spin contributions is enhanced for larger values of U . On the other hand, the
conduction is suppressed for longer chains due to the cumulative Coulomb effect along the
chain. The term U |�n,−σ |2 in the Schrödinger equation creates an effective potential repulsive
to the incident electron, an effect which builds up very rapidly along the chain and hence
suppresses conduction for long chains. Our elementary model does not take into account
the generally important complications such as spin-flip processes, interface effect, and bias
dependence. However, it does provide a basis for the understanding of the effect of electron–
electron correlations on the magnetic transport properties of small systems.
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